4,025 research outputs found

    Quantum Errors and Disturbances: Response to Busch, Lahti and Werner

    Full text link
    Busch, Lahti and Werner (BLW) have recently criticized the operator approach to the description of quantum errors and disturbances. Their criticisms are justified to the extent that the physical meaning of the operator definitions has not hitherto been adequately explained. We rectify that omission. We then examine BLW's criticisms in the light of our analysis. We argue that, although the approach BLW favour (based on the Wasserstein 2-deviation) has its uses, there are important physical situations where an operator approach is preferable. We also discuss the reason why the error-disturbance relation is still giving rise to controversies almost a century after Heisenberg first stated his microscope argument. We argue that the source of the difficulties is the problem of interpretation, which is not so wholly disconnected from experimental practicalities as is sometimes supposed.Comment: AMS latex, 29 page

    Concerning Dice and Divinity

    Get PDF
    Einstein initially objected to the probabilistic aspect of quantum mechanics - the idea that God is playing at dice. Later he changed his ground, and focussed instead on the point that the Copenhagen Interpretation leads to what Einstein saw as the abandonment of physical realism. We argue here that Einstein's initial intuition was perfectly sound, and that it is precisely the fact that quantum mechanics is a fundamentally probabilistic theory which is at the root of all the controversies regarding its interpretation. Probability is an intrinsically logical concept. This means that the quantum state has an essentially logical significance. It is extremely difficult to reconcile that fact with Einstein's belief, that it is the task of physics to give us a vision of the world apprehended sub specie aeternitatis. Quantum mechanics thus presents us with a simple choice: either to follow Einstein in looking for a theory which is not probabilistic at the fundamental level, or else to accept that physics does not in fact put us in the position of God looking down on things from above. There is a widespread fear that the latter alternative must inevitably lead to a greatly impoverished, positivistic view of physical theory. It appears to us, however, that the truth is just the opposite. The Einsteinian vision is much less attractive than it seems at first sight. In particular, it is closely connected with philosophical reductionism.Comment: Contribution to proceedings of Foundations of Probability and Physics, Vaxjo, 200
    corecore